The Science of Chocolate and Cannabis: How They Combine To Make Powerful Medicines

Chocolate and cannabis are so wonderful that even the mention of both in a sentence is enough to make one giggle. Scientific proof is mounting that both chocolate and cannabis contain healing properties. Their dance is well-known to many, who may have fond memories of gorging through a pan of pot brownies.

Powerful Medicine

Powerful Medicine

Indeed, these two super foods are magical but as David Wolfe explains below there is plenty of science that answers ‘how’ and ‘why’ they work so well as medicine. Cannabis is one of them, and the other one is chocolate.


Cannabinoids are fat-soluble (lipophilic), often-medicinal, chemical compounds found in plants and mammals. These compounds can also be synthetically manufactured. The most well-known natural cannabinoid chemical is Delta-9-tetrahydrocannabinol (THC). THC, as we know, is the primary psychoactive compound found in the cannabis genus of plants. Currently there are approximately 85 different cannabinoids that have been isolated from cannabis including the known medicinal compound cannabidiol (CBD). Of cannabis’s cannabinoid extracts, CBD is second in concentration only to THC, ranging as high as 40%.

The search for more cannabinoids in plants took an interesting turn in 1996 when Daniele Piomelli and fellow researchers isolated a cannabinoid neurotransmitter called anandamide (n-arachidonoylethanolamine or AEA) in chocolate. The interesting thing about anandamide is that it is also a naturally endogenous (internally occurring) cannabinoid found in the human brain and nervous system that plays a role in feelings of overall well-being.

The word “anandamide” means “the bliss chemical” because it is released while we are feeling great. Anandamide is derived from the Sanskrit word “ananda” meaning bliss and “mide” meaning chemical.

Cannabinoid Receptors

The original discovery of anandamide in the early 1990s and its discovery in chocolate arose from research into cannabinoid receptor sites. A receptor site is a structure on the surface of a cell that can lock onto certain molecules, making it possible to carry a signal through the cell wall — a “lock-and-key” system. It had long been known that the human brain contains receptor sites that interact with cannabis’ THC molecule. It was inevitable that an endogenous, naturally-occurring, chemical — namely: anandamide — would be found to explain the presence of these receptors.

Cannabinoids such as THC, CBD, and anandamide are keys that fit into (or agonize) cannabinoid receptor sites (or locks) in mammals. Agonists are chemicals that bind to particular receptors on cell membranes (in this case, cannabinoid receptors) and that subsequently trigger responses by these cells. For example, THC agonizes cannabinoid receptors throughout the human body causing not only the classic marijuana high, but also medicinal effects that could protect certain cells and/or cause mutated cells to be destroyed by the immune system. In another example, anandamide in chocolate agonizes cannabinoid receptors throughout the human body. Because anandamide is slightly chemically different from THC, it causes slightly different effects. Eating chocolate provides a mild high, weaker (though similar) to the classic marijuana high. Chocolate’s anandamide also influences cells that affect mood, memory, appetite, pain perception, and (overall) may in fact provide medicinal benefits similar to THC.

There are currently two known main subtypes of cannabinoid receptors: CB1 and CB2 — with a third group CB3 still being researched. The CB1 group of cannabinoid receptors is found mainly in the brain (central nervous system), but also in the kidneys, liver, and lungs. The CB2 group of cannabinoid receptors is found mainly amongst the immune system’s cells (T and B cells, macrophages) and in hematopoietic cells (stem cells that give rise to red blood cells).




Pages: 1 2 3